
HOPSCOTCH
HOUR OF CODE

Teacher notes for student-led
tutorial

TIME

BIG IDEA

KEY VOCABULARY

TRANSFER GOALS

MATERIALS

Sequence: The order in which instructions are
given to the computer
Event: When something happens
Rule: Instructions that tell your computer what to
do (the command) and when to do it (the event)
Loop: Code that repeats
Random: a surprise
Range: the highest and lowest number for random
to choose between

HOUR OF CODE LESSON 01

45-60 minutes (+15 minutes of optional, free code
time)

Computers can only do what you SAY because they
are not smart enough to figure out what you MEAN.
Be specific!

– 1 iPad or iPhone per student, or 1 device per 2
students, for pair programming
– Video tutorial available in Hopscotch and on
YouTube: http://hop.sc/HOC_Video
– Complete project available:
http://hop.sc/HOC_project

1. Students will understand that coding requires
giving a computer explicit directions
2. Students will become familiar with creating and
editing rules
3. Students will practice testing their programs to
find bugs.
4. Students will abstract a problem to design a
solution.
5. Students will develop confidence and persistence.

SKILL FOCUS
– Debugging
– Make sense of problems and persevere in solving
(CCSS.MATH.PRACTICE.MP1)
– Look for and make use of structure
(CCSS.MATH.PRACTICE.MP7)
– Designing solutions (NGSS Practice 6)

TEACHER BRIEF
Hi!

We’re really excited that, this Hour of Code, you’re programming with your students—both
for them and for you. Kids have remarkable imaginations, and creating computer programs is
an amazing way for them to express themselves. We’ve seen kids create astonishing things
using our simple but powerful tool. We know you’ll see the same when using Hopscotch, and
hope you share what your students create.

Anyone, regardless of their experience in programming, can teach this Hour of Code
lesson. Just as Hopscotch was built on the principle that anyone can become a great
programmer, this lesson is designed on the premise that anyone can teach basic
programming, including you!

In this lesson, students will build a game in which their character jumps over fast-moving
obstacles. It’s simple but fun, and very quickly allows them to experience the satisfaction of
telling their computer what to do.

You can teach this Hour of Code in several ways:

1. Students independently complete their games, following along with the video tutorial in
the app. The tutorial is designed to be used without any outside help (though we encourage
kids to pause it as they’re coding). The tutorial is available at http://hop.sc/
SpeedJumperVideo.
2. Students independently complete their games but you ask them to pause their own work
for discussion and group work. We offer discussion ideas, as well as differentiation
techniques and reflection questions, in the following pages.
3. You project the video to the class and use it as a supplement to your instruction. You lead
discussion and group work, and adjust the directions for the project.

After a discussion of what needs to be built and, if desired, how it might be coded, students
can start coding. Depending on how many devices you have, you can have students work
independently or in pairs. At Hopscotch, we do a lot of pair programming (two programmers
share one computer) because it helps us write smarter, less-buggy code. We recommend
trying it! All students should get into the habit of testing their code frequently by running
(playing) it. It is much easier to find and solve mistakes when you’re constantly testing.

Have fun and we can’t wait to see what your students build. Share their projects on social
media and tag us either with #madeonhopscotch or @hopscotch on Twitter and
@gethopscotch on Instagram :)

Yours,
Jocelyn Leavitt
Co-founder and CEO, Hopscotch

HOUR OF CODE LESSON 02

LESSON
0. Discussion: Debugging
In this lesson, students will create their own version of Geometry Dash. While building the
game, they will inevitably make mistakes and create bugs. This lesson is equally as much
about the process of finding and fixing bugs as it is about making a fun game. You can ask
your students to think about this task and imagine themselves as bug hunters.

As programmers, we frequently tell our computers to do something other than what we
intended. We call the resulting mistakes bugs, or errors in a program introduced by the
person writing it. The process of finding and fixing your mistakes is called debugging. One
of the most important lessons in coding is remembering that your bugs are not caused by the
computer—they’re caused by the programmer. And it’s totally expected that all
programmers will write bugs at different points in the development process.

When real-world programmers are in the process of writing code, the rule of thumb is that it
takes 10% of their time to write the first draft, and the other 90% of their time to debug it.
There are engineers whose whole jobs are to debug other people’s code!

It may be worthwhile at this point to discuss debugging with your class. What are some
useful strategies to consider while debugging? The following are just some examples:

What should bug hunters look for? Why is this an important job? When else in our lives have
we had to hunt for and solve problems?

0. Discussion: Debugging
In this lesson, students will create their own version of Geometry Dash. While building the
game, they will inevitably make mistakes and create bugs. This lesson is equally as much
about the process of finding and fixing bugs as it is about making a fun game. You can ask
your students to think about this task and imagine themselves as bug hunters.

As programmers, we frequently tell our computers to do something other than what we
intended. We call the resulting mistakes bugs, or errors in a program introduced by the
person writing it. The process of finding and fixing your mistakes is called debugging. One
of the most important lessons in coding is remembering that your bugs are not caused by the
computer—they’re caused by the programmer. And it’s totally expected that all
programmers will write bugs at different points in the development process.

When real-world programmers are in the process of writing code, the rule of thumb is that it
takes 10% of their time to write the first draft, and the other 90% of their time to debug it.
There are engineers whose whole jobs are to debug other people’s code!

It may be worthwhile at this point to discuss debugging with your class. What are some
useful strategies to consider while debugging? The following are just some examples:

What should bug hunters look for? Why is this an important job? When else in our lives have
we had to hunt for and solve problems?

HOUR OF CODE LESSON 03

• Say what you think your program is supposed to do, see what it actually does, and then
describe the difference in your own words.

• Look at your code for ambiguities, or places where your blocks don’t say exactly what
you want to happen, when you want it to happen.

• Make a checklist of common mistakes: Did you repeat forever? Are the numbers you
plugged in correct? Did you use the correct blocks for what you intended? Move
Forward vs Change X By? Set Speed vs Set Angle, etc. Does your rule belong to the
right object?

• Try to map out the logic of your project. Then see if you’ve written the right code to
create that logic.

• Take a break when you get overwhelmed. We often need distance to see what we’ve
done in its entirety.

LESSON
1. Using Hopscotch (5 minutes)
First, get your students acquainted with Hopscotch.

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the highlighted + on the bottom of the screen

1.4 Choose Blank Project

2. Control the hero (ES) (10 minutes)
In Geometry Dash, the player controls a little square that flips and jumps over obstacles.

Because the jumping and flipping animations happen at the same time, we say they are
concurrent. The way to program concurrence in Hopscotch is to make two rules with the
same event. That way, they are triggered at the same time.

1. Using Hopscotch (5 minutes)
First, get your students acquainted with Hopscotch.

1.1 Finding the Hopscotch app on your iPad
1.2 Signing into your account (students may need to create accounts)
1.3 Making a new project: Tap on the highlighted + on the bottom of the screen

1.4 Choose Blank Project

2. Control the hero (ES) (10 minutes)
In Geometry Dash, the player controls a little square that flips and jumps over obstacles.

Because the jumping and flipping animations happen at the same time, we say they are
concurrent. The way to program concurrence in Hopscotch is to make two rules with the
same event. That way, they are triggered at the same time.

HOUR OF CODE LESSON 04

LESSON
Get students to deconstruct the two steps of jumping (move up, then move down). Does this
up and down movement occur along the X or Y axis? Then, ask your students to add their
hero object (the square emoji) and tell it to turn and jump when they tap their iPad.

2.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

2.2 Add code to hero to make it bigger

2.3 Add code to hero to jump

Get students to deconstruct the two steps of jumping (move up, then move down). Does this
up and down movement occur along the X or Y axis? Then, ask your students to add their
hero object (the square emoji) and tell it to turn and jump when they tap their iPad.

2.1 Add hero object (square emoji) and place it near the bottom left corner of
screen

2.2 Add code to hero to make it bigger

2.3 Add code to hero to jump

HOUR OF CODE LESSON 05

If you choose a number other
than 200, all of the other
numbers we give will also have
to change. This is an
opportunity for debugging.

Make sure the emoji keyboard
is enabled, which you can do in
your iPad’s settings.

By default, Hopscotch names
text objects “Text”, “Text 2”,
etc. Clearly named objects
make it easier for you and
others to read your code,
however, and students should
rename each text object
according to the role it will
serve in the project. Here,
rename the square emoji
“Hero”.

LESSON
2.4 Add new code to hero to turn while jumping

3. Background (S) [10 minutes]

Drawing the background is a skill that you can apply to any game. Because drawing is just
like any other code, you have to choose an object to be in charge of drawing. It is customary
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Draw a Trail” that sets the color and width of the
line, then executes the code inside – typically “Move Forward” – as if the object were
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the
following questions and then test out changing their code. What happens… if you don’t put
anything inside the drawing block? …if you forget to set the width? …if you set the color to
white? …if you don’t set the position before you start?

Then, have students attempt drawing their backgrounds on their own. They can change the
artist’s speed to draw the background faster.

3.1 Add drawing object (choose anything)

2.4 Add new code to hero to turn while jumping

3. Background (S) [10 minutes]

Drawing the background is a skill that you can apply to any game. Because drawing is just
like any other code, you have to choose an object to be in charge of drawing. It is customary
to make this object invisible, so you don’t see the thing itself, only the picture it draws. For
this reason, it doesn’t really matter which object you choose.

In Hopscotch, we draw with a block called “Draw a Trail” that sets the color and width of the
line, then executes the code inside – typically “Move Forward” – as if the object were
dragging a marker behind it. It will make a dot if it just moves by 1. To color in the whole
screen, make a huge dot (width 3000). To make a thick line, you have to set the position to
where you want it to start, and then move along the desired path.

This is another opportunity for debugging. Have the students make a prediction about the
following questions and then test out changing their code. What happens… if you don’t put
anything inside the drawing block? …if you forget to set the width? …if you set the color to
white? …if you don’t set the position before you start?

Then, have students attempt drawing their backgrounds on their own. They can change the
artist’s speed to draw the background faster.

3.1 Add drawing object (choose anything)

HOUR OF CODE LESSON 06

What would happen if you
picked a non-symmetrical hero?
How much would you have to
turn it so it landed on its feet?
What happens when you
choose +180 instead?

LESSON

HOUR OF CODE LESSON 07

Set the invisibility to 100 so you
can’t see the painter.

Change the order of an object’s
rules by dragging a rule up or
down in the editor.

The default speed is 400.
9999 is as high as you ever
need to go; that speed is
indistinguishable from
999999999...

3.2 Add code to drawing object

3.3 Edit drawing object’s code to draw faster

4. Obstacles (LS) [10 minutes]
In games like Flappy Bird and Geometry Dash, it feels like the hero is moving forward
through a stationary world but actually, the hero is stationary and the world is moving
backward. Have you ever sat in a stationary car and another car next to you backs up –
doesn’t it feel, for just a moment, like you’re moving forward? In this game, the hero is the
car you’re in, and the obstacles are the things moving backwards.

Take some time to talk about the movement of the obstacles from one edge of the screen
across to the other edge. See if you can come up with the sequence of obstacles’ movement
rules as a class.

LESSON

HOUR OF CODE LESSON 08

Rename the triangle
emoji “Obstacle”.

After students agree on the correct code, ask them to try implementing it. Then, bring the
class together again and decide as a class at what point the obstacle should be visible and
invisible. Discuss why this feels so much more natural (It’s because our brains are good at
imagining that an object that moves out of our field of view is probably still in motion even
though we can’t see it).

What if we want to make it look like there are many obstacles but only use one object? This is
another great design trick. See if your students can identify the technique to make this
possible – putting the code inside a loop.

Give the students a few minutes to play their game, and then bring the class together again.
Ask for suggestions to make the game more fun and challenging. Like with Crossy Road in
Lesson 1, it is boring (and easy!) because it’s the same every time! Games are challenging
(and fun!) when there is an element of unpredictability. If you make the obstacle wait for a
random amount of time in between passes, the game becomes more fun.

Debugging opportunity: What is the appropriate range for the random wait time? Try out
some different combinations until you settle on one you like.

4.1 Add emoji object for obstacle (triangle)

4.2 Add code to obstacle to make it bigger

4.3 Edit obstacle’s code to move it across the screen

LESSON

HOUR OF CODE LESSON 09

When moving code into the
repeat block, make sure not to
change the order. Students will
probably make a mistake here
—a good opportunity for
debugging!

4.4 Edit obstacle’s code to make sequence repeat forever

4.5 Edit obstacle’s code to wait random (100,1000)

5. Collisions (ES) [10 minutes]
As we learned in Lesson 1, when two objects bump into one another, it is called a collision. A
collision is a type of event, so we can decide what actions should happen when that event
occurs. In Geometry Dash, when the hero collides with an obstacle, the game is over.

To designate “game over,” upon a collision the hero will explode and then disappear. In
Hopscotch, when an object is invisible, it can no longer collide with anything, be tapped, or
swiped. Spend some time testing this sequence and getting the timing right, then publish!

5.1 Add new collision rule to hero

5.2 Publish your game

You can change the object into
an explosion, make it spin
around, or drop off the screen
like Mario. Turning invisible is
necessary, because it stops the
game from being playable.

(15 minutes, optional)

(5 minutes, optional)

DIFFERENTIATION

REFLECTION

HOUR OF CODE LESSON 10

• Draw a better background
• Make the background colors random
• Add more obstacles (two or three emojis in a row is a possibility, make movement into

an ability)
• Set the obstacle size to random each time; pick a good range!
• Print and laminate index cards with debugging strategies and have students check off

strategies as they go

• What are computers good at? What are they bad at?
• How does this compare to what humans are good and bad at?
• Is drawing with a computer easier or harder than drawing with pencil and paper? Why?

If it is harder, why do we still do it?

GLOSSARY FOR YOUNGER STUDENTS

Ability: Code that can be reused

Algorithm: A recipe for a program

Coding: Telling computers what to do

Concurrence: Two things happening at the same time

Conditional: Statements of the form “IF (something is true) THEN (do an action)”.

Debugging: Finding mistakes in your code and fixing them

Event: When something happens

Iteration: Having ideas and making mistakes, over and over

Logic: The process of making decisions

Loop: Code that repeats

Operator: A mathematical symbol that makes an equation

Program: A set of instructions a computer can understand

Programmer: A person who writes programs

Programming Language: A set of rules or blocks that can be used to write any program

Random: When there’s no pattern

Range: The highest and lowest number random can choose between

Rule: Instructions that tell your computer what to do (the command) and when to do it (the
event)

Sequence: The order in which instructions are given to the computer

Object: A character or text with its own rules

Value/Variable: A holder for a number

HOUR OF CODE LESSON 11

GLOSSARY FOR OLDER STUDENTS
Ability/Function/Procedure/Subroutine: A saved set of blocks. What we call abilities in
Hopscotch are known as functions or subroutines in other programming languages. Easily
replicable routines are a key concept in computer programming, and allow you to scale your
code and create complex programs.

Algorithm: Algorithms are at the heart of computer science; they are the recipes that
computers follow to solve problems.

Bug: An error that a programmer has made in their code

Coding: Writing the rules of behavior for a computer to follow automatically; programming

Concurrency: Two or more things happening at the same time, or triggered by the same event

Conditional: Statements of the form “IF (something is true) THEN (do an action)”

Debugging: Finding mistakes in your code (bugs) and fixing them

Event: A trigger that the computer recognizes and causes it to do some action. In Hopscotch,
events include "When the iPad is tapped" or "When the play button is tapped"

Iteration: the repetition of a process

Logic: the science of the formal processes of thinking and reasoning

Loop: a repeating set of instructions

Operator: a mathematical symbol that produces a value

Program: a set of instructions a computer can understand

Programmer: a person who writes programs

Programming Language: a set of words, rules, blocks or instructions that can be used to write
a program.

Random: Any number or item among a set. The lack of a pattern among items in a set.

Range: The highest and lowest number random can choose between

Rule: Rules tell your object what to do and when to do it. When you make an ability and pair it
with an event, you create a rule.

Sequence: An ordered list of things (instructions, blocks, numbers, etc) which can be triggered
by an event or repeated

Object: A character or text with its own rules on screen

Value: A holder for a number. Also known as a variable

HOUR OF CODE LESSON 12

